MIDTERM: ALGEBRA II

Date: 27th February 2018

The Total points is 110 and the maximum you can score is 100 points.

- (1) (6+6+6+6+6=30) Mark all correct options.
 - (a) Which of the following field extensions are algebraic?
 - (i) $\mathbb{Q}(\pi/18)/\mathbb{Q}$
 - (ii) $\mathbb{Q}(\cos(\pi/18))/\mathbb{Q}$
 - (iii) \mathbb{C}/\mathbb{Q}
 - (iv) \mathbb{C}/\mathbb{R}
 - (b) Which of the following numbers can be expressed in radicals? (i) $Sin(2\pi/17)$
 - (ii) Zeros of the polynomial $x^3 27x^2 + 2x + 2018$.
 - (iii) Zeros of the polynomial $x^5 80x 5$.
 - (iv) Zeros of the polynomial $x^5 8x + 7$.
 - (c) Which of the following field are the splitting field of $X^{11} 3$?
 - (i) $\mathbb{Q}(\sqrt[11]{3})$
 - (ii) $\mathbb{Q}(\sqrt[11]{3}, e^{2\pi i/11})$
 - (iii) $\mathbb{Q}(\sqrt[11]{3}, \cos(2\pi/11))$
 - (iv) $\mathbb{Q}(\sqrt[11]{3}, \cos(2\pi/11), i)$
 - (d) Which of the following field extensions are Galois?
 - (i) $\mathbb{F}_p(x)/\mathbb{F}_p(x^p x)$ where p is a prime, x is an indeterminate and \mathbb{F}_p is the field of p elements.
 - (ii) $\mathbb{Q}(\sqrt[3]{7})/\mathbb{Q}$
 - (iii) \mathbb{R}/\mathbb{Q}
 - (iv) $\mathbb{Q}(\sqrt[4]{3})/\mathbb{Q}(\sqrt{3})$
 - (e) Let G be the group of automorphisms of the field $\mathbb{Q}(\sqrt[5]{2}, e^{2\pi i/5})$ and $H = \{\sigma \in G : \sigma(\sqrt[5]{2}) = \sqrt[5]{2}\}$ and $I = \{\sigma \in G : \sigma(e^{2\pi i/5}) = e^{2\pi i/5}\}$. Then which of the following is true?
 - (i) $|G| = |H| \cdot |I|$.
 - (ii) H and I are normal subgroups of G.
 - (iii) G is generated by H and I.
 - (iv) G is abelian.
- (2) (5+15=20 points) When are field extensions called linearly disjoint? Let K/F and L/F be Galois extension extensions with $\operatorname{Gal}(K/F) = S_n$ for some $n \geq 5$ and [L : F] is odd. Show that K/F and L/F are linearly disjoint.
- (3) (8+12=20 points) Define separable field extension and normal field extension. Let K/F be a finite normal extension and $L = \{\alpha \in K : \alpha \text{ is separable over } F\}$. Show that L is a field and L/F is Galois extension.

MIDTERM: ALGEBRA II

- (4) (20 points) Let F be a field and $f(x) \in F[x]$ be an irreducible separable polynomial of degree n. Let G be the Galois group of the splitting field of f(x). Show that the action of G on the set of all the zeros of f(x) in the splitting field is transitive. If $F = \mathbb{Q}$ and $f(x) = x^4 2$ then compute G.
- splitting field is transitive. If $F = \mathbb{Q}$ and $f(x) = x^4 2$ then compute G. (5) (20 points) Let p be a prime and \mathbb{F} be a finite field of order p^n for some $n \ge 1$. Show that for any $a \in \mathbb{F}$, the polynomial $(X - a^p)(X - a^{p^2}) \dots (X - a^{p^n}) \in \mathbb{F}_p[X]$.

 2